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ABSTRACT

Deep Learning (DL) has gained wide attention in recent years.
Meanwhile, bugs in DL systems can lead to serious consequences,
and may even threaten human lives. As a result, a growing body of
research has been dedicated to DL model testing. However, there
is still limited work on testing DL libraries, e.g., PyTorch and Ten-
sorFlow, which serve as the foundations for building, training, and
running DL models. Prior work on fuzzing DL libraries can only
generate tests for APIs which have been invoked by documentation
examples, developer tests, or DL models, leaving a large number
of APIs untested. In this paper, we propose DeepREL, the first ap-
proach to automatically inferring relational APIs for more effective
DL library fuzzing. Our basic hypothesis is that for a DL library
under test, there may exist a number of APIs sharing similar input
parameters and outputs; in this way, we can easily “borrow” test
inputs from invoked APIs to test other relational APIs. Furthermore,
we formalize the notion of value equivalence and status equivalence
for relational APIs to serve as the oracle for effective bug finding.
We have implemented DeepREL as a fully automated end-to-end re-
lational API inference and fuzzing technique for DL libraries, which
1) automatically infers potential API relations based on API syntac-
tic/semantic information, 2) synthesizes concrete test programs for
invoking relational APIs, 3) validates the inferred relational APIs
via representative test inputs, and finally 4) performs fuzzing on
the verified relational APIs to find potential inconsistencies. Our
evaluation on two of the most popular DL libraries, PyTorch and
TensorFlow, demonstrates that DeepREL can cover 157% more APIs
than state-of-the-art FreeFuzz. To date, DeepREL has detected 162
bugs in total, with 106 already confirmed by the developers as previ-
ously unknown bugs. Surprisingly, DeepREL has detected 13.5% of
the high-priority bugs for the entire PyTorch issue-tracking system
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in a three-month period. Also, besides the 162 code bugs, we have
also detected 14 documentation bugs (all confirmed).
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1 INTRODUCTION

Recent years have witnessed the surge of deep learning (DL) in a
variety of applications, including computer vision [32, 60], natural
language processing [24, 28], robotics [23, 35], bioinformatics [46,
57], and software engineering [25, 29, 36, 37, 45, 68, 78, 79, 81, 82].
Meanwhile, similar to traditional software systems, DL systems can
also have bugs, which can lead to serious consequences and may
even threaten human lives [4].

To date, most prior work on DL testing focused on testing/verify-
ing DL models, with an emphasis on adversarial attacks [14, 19, 27,
42,47, 51], metrics for model testing [31, 34, 41, 53, 77], application-
specific model testing [62, 85, 88], and verifying certain properties
of models [15, 38]. Meanwhile, there is limited work targeting the
reliability of DL libraries, which serve as the central infrastructures
for building DL models, and are the foundation for training and
deploying DL models. CRADLE [54] is one of the trailblazing work
on testing DL libraries, which resolves the oracle challenge with
differential testing of various DL models on multiple backends of
Keras [1]. AUDEE [30] and LEMON [65] further augment CRADLE
by leveraging search-based mutation strategies to generate more
diverse DL models/inputs for testing library code. Different from
the above model-level DL library testing techniques, more recently,
FreeFuzz [66] has been proposed to mine example inputs from open
source (including code snippets from the library documentation,
developer tests, and DL models in the wild) to directly test each
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DL library API in isolation. FreeFuzz has been evaluated on Py-
Torch [52] and TensorFlow [13], currently the two most popular DL
libraries (with 54K/162K stars on Github). The experimental results
show that FreeFuzz can cover 9x more APIs than state-of-the-art
LEMON and detect various previously unknown bugs.

Despite the promising results, existing techniques for fuzzing
DL libraries still suffer from the following limitations. First, the
input generation is still far from optimal. CRADLE and AUDEE can
only test APIs that are covered in the original models, and LEMON
can cover slightly more APIs with layer mutations; furthermore,
although FreeFuzz can cover up to 1158 APIs for PyTorch and
TensorFlow (which is already a huge improvement over other work),
it is still unable to test an API if there is no code snippet directly
invoking the API Second, there is still a lack of powerful test oracles.
Existing techniques typically perform differential testing across
different DL libraries or hardware backends (e.g., GPU/CPU) to
address the test oracle issue. However, differential testing across
DL libraries is typically applied at the model level and suffers from
the limited effectiveness of model-level testing (e.g., limited API
coverage and accumulated floating-point precision loss) [30, 54, 65],
while different backends often share common code logic/design
(and thus may also share similar bugs) [66]. Thus, it is also crucial
to investigate novel test oracles for effective DL library fuzzing.

To address the aforementioned limitations, in this work, we
open a new dimension for testing DL libraries via automated rela-
tional API inference. The inspiration stems from the fact that prior
work [16, 26, 43, 64] has discovered a number of equivalent APIs
in traditional software systems (e.g., Java projects)'. We envision
such relational API inference also to be an inspiring direction for
fuzzing DL libraries. In this way, given the same inputs generated
via fuzzing, APIs that are equivalent in functionality should pro-
duce the same numerical results (i.e., value equivalence). Moreover,
besides the previously studied equivalent APIs, we further lever-
age the fact that DL APIs with similar functionality should behave
similarly in terms of program status (i.e., status equivalence) for
more effective fuzzing. For example, although AdaptiveAvgPool3d
and AdaptiveMaxPool3d in PyTorch are not equivalent, they are func-
tionally similar APIs; thus, we can feed any valid input of the first
API to the second API and expect its invocation to also be successful.
Based on this intuition, we can easily “borrow” test inputs gener-
ated for one API to test other relational APIs. Also, API relations
can directly serve as test oracles for differential testing. Therefore,
we can easily overcome the aforementioned limitations.

We have built a fully-automated technique, DeepREL, which
infers such API relations without human intervention for fuzzing
DL libraries. One key challenge is how to obtain the API relations
automatically and accurately. Existing work [16, 26, 43, 64] on equiv-
alent API inference for traditional software systems can hardly be
applied for DL library testing, e.g., the most recent MeMo work [16]
heavily relies on well-documented API relations, which are rare in
DL libraries. To this end, DeepREL first automatically infers all pos-
sible candidate API pairs that are matched based on API syntactic
and semantic information. Then, DeepREL synthesizes concrete test
programs for those potentially relational APIs. After that, DeepREL

1Some of such existing work( [16, 26, 43]) treated the entire software systems under
test as the test objects, and thus viewed this as metamorphic testing [20]. In this paper,
we treat each API as a test object and view this as differential testing [44].

Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang

class NetA(nn.Module):
self.conv = Conv2d(3, 6, 5)

self.pool = MaxPool2d(2, 2)
self.fc = Linear(1024, 10) @ Input Tensor
Program def forward(self, x): Conv2d . X
i X = ReLU(self.conv(x)) ‘Weight Tensor
X = self.pool(x)
return self.fc(x) ReLU o Label Tensor
]

net = NetA()
Model for data in Dataset: MaxPool2d
Inference out = net(data) Forward

_, predicted = max(out, 1)
Loss
L,

Backward

optimizer = SGD
net = NetA()

for data, label in Dataset:
e out = net(data)
Training loss = CrossEntropyLoss(label,out)
Loss. backuard() Backward

optimizer.step()

Figure 1: Background knowledge on DL Models and APIs

leverages a set of representative valid inputs (automatically traced
during prior normal API executions) to check whether the inferred
API relations hold or not. Lastly, DeepREL takes the validated API
pairs and leverages mutation-based fuzzing to generate a much
more diverse and extensive set of test inputs for detecting potential
inconsistencies among relational APIs. Our study has shown for
the first time that there can be a surprising number of equivalent
or similar APIs within popular DL libraries (e.g., 4290/8808 verified
relational API pairs by DeepREL for PyTorch/TensorFlow), which
can substantially help with fuzzing DL libraries (and beyond). In
summary, our paper makes the following contributions:

e Dimension. This paper opens a new dimension for fully-
automated DL library fuzzing via relational API inference.

e Technique. We build DeepREL, a fully-automated end-to-
end framework for DL library testing. DeepREL automati-
cally infers all possible candidate relational APIs based on
both API syntactic and semantic information, and then dy-
namically verifies them via test program synthesis. While
this work focuses on DL libraries, the basic idea of DeepREL
is general and can also be applied to other software systems.

e Evaluation and Impact. DeepREL covers 1815 more APIs
than prior work (i.e., 157% improvement), and has detected
162 bugs in total, with 106 already confirmed by the devel-
opers as previously unknown bugs. Surprisingly, DeepREL
was able to detect 13.5% of the high-priority bugs for the en-
tire PyTorch issue-tracking system in a three-month period.
Also, besides the 162 code bugs, we were able to detect 14
documentation bugs (all confirmed) as a by-product of our
experimentation.

2 BACKGROUND
2.1 Basics about DL Models and APIs

For DL models, inference is the process of using a fixed DL model to
complete a specific task, while training is the process of updating the
weights of a neural network to better perform a certain task given
the labeled data (under the scenario of supervised learning [72]). We
next shed light on how this is achieved by APIs from DL libraries.
DL Models. To build and run a DL model, developers first need
to define the model by writing a DL program in DL libraries (e.g.,
PyTorch [52] and TensorFlow [13]). Take the DL program NetA
written in PyTorch (shown on the left side of Figure 1) as an exam-
ple, it includes a convolution layer (Conv2d), a max pooling layer
(MaxPool2d), and a linear layer (Linear). The function forward de-
fines how the input tensor (x) should flow in the defined layers (and
other related APIs). Besides input tensors, there are also weight
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tensors (e.g., W1 and W2 shown on the right side of Figure 1). Their
values will be updated during training, the process of which is
called back-propagation [69], a procedure natively supported by DL
libraries. Training the model is achieved by first running the for-
ward part (i.e., inference) of the neural network (out = net(data)),
computing the loss (loss = CrossEntropyLoss(label, out)), com-
puting the gradient (loss.backward()), and invoking the optimizer
(optimizer.step()) for back-propagation.

DL APIs. When running a DL model, the APIs involved in building
the model are also executed. Essentially, writing a DL program
can be viewed as defining a computation graph. It is a directed
acyclic graph (DAG) whose nodes are DL APIs while edges are the
flow of the tensors. Figure 1 also shows the computation graph,
composed of three parts: forward part (taking input tensors and
weight tensors as input), loss computation part (requiring label
tensors), and backward part (for updating weight tensors). Actually,
the backward part needs to construct a very complex graph [87], but
we omit it in Figure 1 for simplicity. Essentially, running a whole
DL model can be broken down into invoking a series of DL APIs
based on the topological sorting [74] of the computation graph.

2.2 Fuzzing DL Libraries

To our knowledge, there are mainly two categories of work for
fuzzing DL libraries, model-level testing, and API-level testing.
Model-level Testing. CRADLE [54] is one of the first to apply
differential testing for DL libraries. Since Keras [1] is a library
featuring high-level APIs for building DL models, APIs in Keras
may have multiple implementations in its supported lower-level
libraries. Thus, CRADLE takes 30 pre-trained DL models as input
and runs differential testing to find inconsistencies between differ-
ent low-level libraries for Keras. More recently, AUDEE [30] and
LEMON [65] have proposed to use search-based mutation strategies
to generate mutated DL models for differential testing on different
backends. While AUDEE focuses on mutating parameters of layers,
weight tensors, and input tensors, LEMON applies mutation rules
by adding/deleting layers and changing the values of weight tensors.
In this way, LEMON’s mutation rules are more general and can
cover more APIs than the original models. However, even LEMON’s
mutation can only be applied to a limited number of APIs. For in-
stance, its intact-layer mutation rule [65] requires that the output
tensor shape of the APIto be added/deleted should be identical to its
input tensor shape, making a large number of APIs inapplicable for
mutation. Researchers have recently shown that LEMON can hardly
invoke additional library code/APIs with its mutation rules, e.g.,
covering only 35 APIs in total for TensorFlow [66]. Very recently,
Liu et al. [39] proposed NNSmith, which leverages lightweight spec-
ifications for more diverse model generation. Meanwhile, it also
mainly focuses on commonly used APIs/operators.

API-level Testing,. Different from prior work on DL library fuzzing,
the recent FreeFuzz work [66] proposes to directly mine test in-
puts from open source for API-level fuzzing, a much finer-grained
level than model-level testing. One challenge is that Python is a
dynamically-typed language, making it hard to determine the types
of API parameters for fuzzing Python APIs. Prior work has to man-
ually set up the API arguments, and thus can only test a small
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1 resultl
2 result2

torch.broadcast_shapes(*shapes)
torch.broadcast_tensors(*map(torch.empty, shapes))[0].shape

Figure 2: API pair with the same output

number of APIs, e.g., Predoo [86] can only test 7 APIs for Tensor-
Flow. A very recent work DocTer [76] constructs rules to extract
DL-specific input constraints from API documentation and uses
them to generate valid/invalid inputs for testing DL libraries; mean-
while, it requires manual annotation for 30% of API parameters. In
contrast, FreeFuzz resolves this challenge fully automatically via
dynamically tracing API executions in code snippets from the doc-
umentation, developer tests, and 202 DL models. More specifically,
FreeFuzz records the traced argument values in a database and fur-
ther performs mutation-based fuzzing to mutate those traced values
to generate even more inputs for fuzzing DL library APIs. Lastly,
FreeFuzz applies differential testing on different hardware backends
(i.e., CPU/GPU) for detecting potential consistency bugs. Despite its
big improvement over prior work, FreeFuzz can only test 1158 APIs
for PyTorch and TensorFlow, which are the ones covered in its input
mining stage, leaving a total of 6815 APIs uncovered. Also, different
hardware backends may still share code logic/design, causing the
differential testing oracle used by FreeFuzz to miss various bugs. In
this work, we propose to test relational APIs to further overcome
such limitations. We build our technique (DeepREL) upon FreeFuzz
to automatically infer relational APIs and leverage them to fuzz DL
libraries. Note, however, that our DeepREL idea is general and can
be built on any API-level fuzzer for DL libraries (e.g., DocTer [76]).
We choose FreeFuzz since it is a recent state-of-the-art technique
that is both publicly available and fully automated.

3 PRELIMINARIES

We first introduce the preliminaries for our fuzzing technique in
this section. Given the set of all possible APIs, A, for a DL library
under test, we aim to define the relational property between the
invocation results of a source API S € A and a target APIT € A.
Intuitively, we can directly check whether S and T produce equiv-
alent outputs. For example, Figure 2 shows an API pair which,
according to the PyTorch documentation [3], should always pro-
duce the same results. The broadcast_shapes API applies broad-
casting on a list of compatible shapes to align them, while the
broadcast_tensors API applies broadcasting on a list of shape-
compatible tensors to align their shapes. In fact, the first API can
be rewritten as 1) creating intermediate empty tensors from ten-
sor shapes with map and torch.empty, 2) calling broadcast_tensors
with these tensors, and 3) getting the shape of the output tensor.
Since the source and target APIs can achieve the same function-
ality with totally different implementations given the same input
(shapes in Figure 2), they provide a great opportunity for differential
testing [44]. Therefore, we have the following formal definition:

Definition 3.1. Equivalence,,;,,.. Given a set of inputs D, source
API S € A and target APIT € A satisfy Equivalence,,;,, (modulo
D) iff their invocations always output the same results given any
input in O. Formally,

S=T(mod D) < Vx e D.S(x)=T(x) (1)

While this can be effective in detecting potential consistency
bugs, the checking is too strict and may not apply to a large number
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layer1 = torch.nn.AdaptiveAvgPool3d(output_size)
resultl = layer1(input)
layer2 = torch.nn.AdaptiveMaxPool3d(output_size)
result2 = layer2(input)

PRT

Figure 3: API pair with different outputs but same status

of APIs. In fact, it could be possible that S and T produce totally
different results, but tend to behave similarly given similar inputs.
For example, the API pair shown in Figure 3 does not satisfy the
Equivalence,,;,, property since the output of AdaptiveAvgPool3d is
different from AdaptiveMaxPool3d. The first API applies a 3D adap-
tive average pooling over an input but the latter applies a 3D adap-
tive maximum pooling. However, these two APIs do share certain
functionality in common since both of them apply a pooling opera-
tion, which is also valuable for testing. Therefore, we further ab-
stract the invocation result of a program into a set of coarse-grained
statuses: Success, Exception, and Crash. Success denotes that
program executions terminate normally, while Exception means
that program executions throw known exceptions. Lastly, Crash
represents the cases where the program executions crash with
unexpected errors, e.g., segmentation faults or INTERNAL ASSERT
FAILED errors (which are “never acceptable” as commented by Py-
Torch developers). We then further introduce the notation of [[-]] €
{Success, Exception, Crash} to return the execution status of an
input program. For example, [S(x)] = Success indicates that S
terminates normally with the input x. In this way, we can define
another property for checking potential consistency:

Definition 3.2. Equivalenceg;qys. Given a set of inputs D, source
APIS € A and target APIT € A satisfy Equivalences;qsus (modulo
D) iff their invocation always output the same statuses given any
input in O. Formally,

S~T(mod D) = Vx e D.[Sx)] =[T)] (2)

To conclude, the Equivalenceg;qys relation is a relaxed notation
for the Equivalence, ;. relation, which is in turn a relaxed notation
of semantic equivalence (denoted as S = T). Formally,

S=T = S=T(mod D) = S ~ T(mod D) 3)

One crucial component of these two definitions is the domain D
on which the properties are constrained. Aiming for more accurate
API relations, it would be beneficial to cover more representative
test inputs within the intersection of the valid input space of the
source and target APIs as the domain.

4 FUZZING RELATIONAL APIS

Figure 4 shows the overview of our DeepREL technique for fuzzing
relational APIs of DL libraries. DeepREL takes as input the targeted
DL library, its API documentation, and a database of valid historical
APl invocations (e.g., automatically collected via running documen-
tation examples, library tests, and DL models [66]). Each entry of
the database contains the concrete argument values passed into an
API during an invocation and is obtained through dynamic tracing.
Overall, DeepREL performs the following four phases iteratively:
API Matcher (Section 4.1). In order to test a DL library which typ-
ically has hundreds or even thousands of APIs, the first challenge is
to identify the API pairs that are likely to satisfy the desired prop-
erties Equivalence, ;. or Equivalenceg;qsys. API Matcher maps
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each API into embeddings based on API documentation, and uses
embedding similarity to identify candidates of API pairs.

Invocation Synthesizer (Section 4.2). Given a collection of poten-
tial API pairs, Invocation Synthesizer decides how to invoke them.
To construct valid invocations for later verification, we impose a
constraint on the source API: it must have at least one (valid) invo-
cation in the database. In this way, given an invocation of the source
API, Invocation Synthesizer aims to synthesize the invocation code
for the target APL

API Match Verifier (Section 4.3). Given the invocation code of
matched APISs, this phase would check whether each API pair sat-
isfies property Equivalence,,y,. or Equivalenceg;qsys with a set
of representative inputs as the verifying test inputs. If the result
values (resp. execution statuses) are consistent for all tests, then
API Match Verifier accepts the API pair as Equivalence,,,;,,. (resp.
Equivalencessqrys). If API Match Verifier detects any inconsistency
in this phase, it then rejects the API pair.

API Fuzzer (Section 4.4). The last step is to leverage the verified
API pairs to detect potential consistency bugs. API Fuzzer uses
mutation-based fuzzing to generate a large number of test inputs for
source APIs, and tests the verified API pairs with oracles (Section 3).

Lastly, recall that in order to generate valid inputs, the source
API must have at least one (valid) invocation in the database. Deep-
REL further adopts an iterative process to cover more API pairs
(Section 4.5). The newly generated valid target API invocations can
be added to the database to serve as the source APIs for the next
iterations to detect more potential API pairs. The following sections
would explain each phase in detail.

4.1 API Matcher

In this phase, DeepREL identifies potential matched API pairs from
the documentation. DeepREL uses API Matcher to infer similar API
pairs as candidate pairs (which will be further verified later). API
Matcher would map each API into its embeddings, and compute
the cosine similarity of embeddings to be the similarity of each API
pair. We consider signature similarity and document similarity that
cover both API syntactic and semantic information for similarity
computation. Overall, for each API pair, the similarity is defined as
the maximum of the two:

Simapy(S,T) = Max(Sims;g(S, T), Simgoc (S, T)) (4)

We compute the pair-wise similarity for every API pair, and pair
each API with its K-closest neighbors as the candidate pairs. K is a
hyper-parameter and is set to 10 in the default setting of DeepREL.
Notably, we also analyze the impact of different values of K in our
experimental study (Section 6.3).
Signature Similarity. The signature of an API contains the API
name and an ordered list of argument names. The APIs that will
be paired typically have signatures that follow a similar syntac-
tic pattern. For example, the API pair tf.maximum and tf.minimum
satisfies Equivalences;qrys, and their signatures are very similar:
tf.maximum(x, y) and tf.minimum(x, y). We map an API signa-
ture into its TF-IDF (term frequency-inverse document frequency)
embedding [73], and compute the embedding similarity.

TF-IDF has been widely adopted in the field of information re-
trieval, and it reflects the importance of each word in a document.
Some common words like tf and torch in the API signature are
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Invocation Synthesizer ‘[>‘

API Match Verifier ‘[> ‘ API Fuzzer

APl documentations .
torch.tensor_split(input, indices_or_ Template Matching
sections, dim=0)

Splits a tensor into multiple sub-tensors —
torch. tensor_split(input,indices_or_secti
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torch.vsplit(input, indices_or_sectio
ns)

Splits input into multiple tensors vertically.

This is equivalent to calling torch.tensor_split

(input, indices_or_sections, dim: Argument Matching

o ) vsplit tensor_split
s /,./'] input

input [ S
indices_... @<

API Matching Model

9

) indices_...

tensor_split
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Potential bugs

Figure 4: DeepREL overview

less informative, so their TF-IDF weights tend to be smaller. To
obtain the TF-IDF embedding for each API, we first break the API
signatures into subwords (also called tokens) and then standardize
them. Let n denote the size of the vocabulary from all the tokenized
API signatures, an API S can be represented as an unnormalized
term frequency embedding [cig R cg s cg], where ¢3 is the number
of occurrences of word j in the API signature of S. We further
normalize it with the inverse document frequency for each word
to get the TF-IDF embedding:

S S S
C C C
2 n
Repg; (S) = [——. -] ()
9 DI N 3 e
S'eA S'eA S'eA

The cosine similarity of two vectors is the cosine of the angle
between them, and thus always belongs to the interval [—1, 1]. The
cosine similarity of two arbitrary vectors x, y is defined as follows:

Xy
Cos(x,y) = ——— (6)
[yl

We then compute the cosine similarity between the TF-IDF em-

beddings to be the signature similarity of two APIs (S, T):

Simsig(S,T) = Cos(Rep;y(S), Repy; (T)) 7)

Document Similarity. To complement the signature similarity,
we further model the semantic similarity between API documents.
First, we extract all API descriptions from the documentation, each
of which is a one-sentence summary of an API given at the begin-
ning of the document. For example, API torch.vsplit is described
as “Splits input, a tensor with two or more dimensions, into multiple
tensors vertically according to indices_or_sections. ” The description
succinctly and surgically states the expected input, the transfor-
mation applied, and the expected output. Next, we use Sentence-
BERT [58] to encode these informative description sentences into
semantically meaningful sentence embeddings. The Sentence-BERT
encoder takes a natural language sentence as input and outputs
a vector in high-dimensional space; it targets specifically at gen-
erating embeddings whose cosine similarity reflects the semantic
textual similarity. We use S.description to denote the description
for the API S, and use SBEncoder to denote the Sentence-BERT

encoder. For each API S, we obtain its document embedding as:
Rep 4,.(S) = SBEncoder(S.description) (8)

For each API pair (S, T), we compute the cosine similarity be-
tween their document embeddings as their document similarity:

Simgoc (S, T) = Cos(Rep g,.(S), Rep 4,0 (T)) 9)

4.2 Invocation Synthesizer

In this phase, we leverage argument matching and template match-
ing to synthesize the invocation code for each matched API pair.
Note that the invocation code of source API is simply the code
snippet that directly invokes the source APIL Therefore, we will
next focus on generating the target API invocation code.
Argument Matching. For each candidate API pair, DeepREL first
synthesizes the invocation code based on API definitions. It maps
the arguments of the source API to the arguments of the target
API to synthesize the invocation code of the target API (with the
arguments from the source API).

We transform the argument matching problem into a maximum
weighted bipartite matching problem [71]. DeepREL generates the
invocation code based on the best argument match. More formally,
given the source API S, the target API T, and their argument lists
S.args and T.args, the corresponding bipartite graphis G = (L, R, E),
where L = {a | a € S.args}, R={b | b € T.args} and E = {(a,b) |
a € L,b € R}. The weight of each edge (a,b) € E is the similarity
Simgarg(a, b) of a and b, which is defined as:

Simarg(a,b) = Simpame (a, b) + Simyype(a,b) + Simpos(a, b) (10)

The similarity Simarg(a, b) is determined by the names, potential
types, and positions of the arguments. First, the similarity of the
names is computed based on the following formula:

Levenshtein(aname, bname)
Max(Len(aname), Len(bname))

where angme is the name of argument a. This similarity is based on
the Levenshtein Distance [70] between the two names. Next, we
compute the similarity of two type sets as:

(11)

Simpame(a, b) =1

lazype N brypel

Simtype(a, b) = larupe]
ype
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Figure 5: Example weighted bipartite graph
torch.vsplit(#1, #2)
torch.tensor_split(#1, #2, dim=0)
Figure 6: Invocation synthesis via argument matching

where a;ype is the set of possible types of a. If the set of types that
argument b can take contains all possible types of a, a is more likely
to be mapped to b since all types of a are legal for b.

We also compute the positional similarity of two arguments as:

_ @idx = bidx|
(13)
Max(Len(S.args), Len(T.args))

Simpos(a,b) =1

where a;4, is the index of a in S’s argument list. For example, if a
and b are both the first argument for S and T, then |a;4, — bjgy|
equals to 0 and thus their positional similarity is 1.

After constructing the graph, DeepREL leverages Kuhn—-Munkres
algorithm [48] to find the best argument match and synthesizes the
invocation code based on it. When the source and target APIs have
the same number of arguments, DeepREL will synthesize the invo-
cation code based on the best argument match directly. Otherwise,
if any non-optional argument is unmatched, DeepREL will abort
for the current API pair since the search space for determining the
values of unmatched non-optional arguments is huge. That said,
DeepREL only considers the case where the optional arguments
of the source or target API are unmatched. For the unmatched op-
tional arguments, DeepREL just uses their default values (Python
optional arguments always have default values).

Take an API pair vsplit and tensor_split for example, whose
weighted bipartite graph is shown in Figure 5. For each vertex, its
name and type information are marked next to it, such as vertex
ai, whose argument name is input, possible type set is composed
of Tensor, and index is 1. The weight on each edge is the similarity
between the two arguments. For vertices a; and by, since they have
exactly the same name, possible type, and index, their similarity
is 3. For aj and by, their names are different but the type set of
a; is the subset of by’s, so they have a relatively high similarity
(1.9). However, for az and by, only one type of ay is legal for by,
causing their similarity to be low (1.1). Thus, the best match in the
graph is {(a1, b1), (az, b2) }, leaving b3, the optional argument dim,
unmatched. Then DeepREL sets dim as its default value 0 to generate
the invocation code, as shown in Figure 6 (where placeholders #i
indicate the argument mapping between source and target APIs).

Note that for each argument of each API, we gather its possible
types from open source. To be precise, we extract the argument
type information from all the traced invocations of the API to form
the possible type set. The type set could be incomplete since it relies
on the traces. When no traces cover a particular argument b of a
target APL the type set b;ype Will be empty; thus, the type similarity
between b and any other argument a will be Sim; ype(a, b) = 0. Note
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I tf.scatter_nd(indices, updates, shape, name=None)

Calling tf.scatter_nd(indices, updates, shape) is identical to calling

tf.tensor_scatter nd_add(tf.zeros(shape, updates.dtype), indices, updates).

(a) Documentation of tf.scatter_nd

tf.scatter_nd(#1,#2,#3)
tf.tensor_scatter_nd_add(tf.zeros (#3,#2.dtype) ,#1,#2)
(b) Invocation code from template

Figure 7: Invocation synthesis via template matching

that the argument matching algorithm still works in this case, with
only the name and positional similarities being considered.
Template Matching. For some complex API pairs, DeepREL can-
not leverage argument matching to generate the correct invoca-
tion code of the target API Figure 7b shows the right invocation
code between scatter_nd and tensor_scatter_nd_add. Obviously,
argument matching fails to synthesize the complex invocation
code of tensor_scatter_nd_add, in which case a matching tem-
plate can be useful. A matching template is a code snippet elab-
orating a matched API pair. It presents an invocation of the target
API, whose inputs are obtained from the arguments of the invo-
cation of the source APL Figure 7a shows an example matching
template (highlighted with underline) from the documentation of
tf.scatter_nd. It suggests that invoking scatter_nd is equivalent to
invoking tensor_scatter_nd_add with proper argument mappings
as shown in Figure 7b.

To automatically detect such templates, DeepREL examines each
code block in the documentation. Whenever a code snippet contains
the invocation of another API, DeepREL extracts it as a potential
candidate. Note that not every API pair has such templates. If Deep-
REL failed to extract any, the matching template will simply be None.
For API pairs with a matching template, regardless of whether it is
in top-K similar pairs, DeepREL synthesizes additional invocation
code using the matching template as the target API invocation code.

4.3 API Match Verifier

In this phase, DeepREL runs the invocation code synthesized for
each matched API pair over a set of verifying inputs to validate
properties Equivalence,,;,,. and Equivalenceg;qsys (defined in Sec-
tion 3). The verifying inputs are a collection of valid inputs for the
source API. These inputs can be collected from the documentation,
library tests, and existing DL models, so that they are representa-
tive of the valid input space of the source API. For example, in our
implementation, we leverage state-of-the-art FreeFuzz [66], which
can collect all such information fully automatically.
Equivalence, ;.. DeepREL first checks whether a candidate API
pair satisfies the Equivalence,,, . property given the verifying
inputs. If so, DeepREL accepts this matching pattern and marks it
as Equivalence, ;.. Take the API pair in Figure 7b for example,
scatter_nd always has the same output as tensor_scatter_nd_add
for all verifying inputs. Hence, it is labeled as Equivalence ;-
Equivalenceg;qsqs. If the API pair violates Equivalence,,;,,., Deep-
REL further checks whether the source and target API have the
same status given verifying inputs. If so, DeepREL accepts this API
relation as Equivalencesqsys. For instance, the Equivalence,q;,,¢
property does not hold for the pattern shown in Figure 3 since the
output of AdaptiveAvgPool3d is different from AdaptiveMaxPool3d
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over the input set. However, the Equivalenceg;qys property holds
as they always have the same status over the verifying inputs.

If an API pair is verified as Equivalence, ;. or Equivalences;qrys,
it will be accepted by the API Match Verifier and further tested
in the next fuzzing phase; otherwise, DeepREL rejects this pair.
Please note that it is crucial to have a set of representative verifying
inputs. If the verifying inputs are not representative, the API Match
Verifier could mistakenly accept a wrong API relation when the
verifying inputs do not cover certain important regions of the pos-
sible input space. We will study such false positives in detail in our
experimental study (Section 6.2). On the other hand, the API Match
Verifier may also reject some true matched API pairs if the verifying
inputs directly trigger real consistency bugs in this phase. Although
it is hard to avoid such false negatives, our experimental results
show that DeepREL detects 162 bugs for popular DL libraries fully
automatically, demonstrating the effectiveness of this design.

4.4 API Fuzzer

In the last phase, DeepREL further leverages the verified API pairs
to detect bugs for DL libraries. Specifically, DeepREL applies off-the-
shelf mutation-based fuzzing techniques [66] to mutate the source
API inputs for generating diverse inputs for differential testing. For
Equivalence,,j,,, the source and target APIs are expected to have
the same output. We can detect consistency bugs by comparing the
results of the source and target APIs. For Equivalences;qrys, the
source and target APIs are expected to have the same status. Thus,
we compare their statuses to detect bugs.

4.5 The Iterative Process

In order to cover more APIs by matched API pairs, DeepREL per-
forms the above four phases iteratively until the fixed point or
a given number of iterations I (by default 10). In the API Match
Verifier phase, if the target API is not covered in the current itera-
tion and its invocation generated by the synthesizer has Success
status, we will add this invocation into the database (even when the
corresponding API relation got falsified) and label the target API
as “newly covered API”. After this iteration, if there is any newly
covered API, DeepREL will re-run the framework with these newly
covered APIs as the source APIs; otherwise, the fixed point has been
reached, and DeepREL will terminate. It is worth mentioning that
the entire iterative DeepREL approach is fully automated. For the
newly covered APIs, the verifying inputs are also automatically
“borrowed” from the source APIs’ valid inputs.

Figure 4 presents one example of this iterative process. In the
first iteration, the API Match Verifier takes API pair (torch.vsplit,
torch. tensor_split) as input, and queries the invocation database
@ to get a record for torch.vsplit. Invoking torch. tensor_split
@ results in Success. Assuming that torch.tensor_split is not
covered in the database at the beginning of the iteration, this suc-
cessful invocation is then inserted into the database €). In the next
iteration, this invocation record will be retrieved @ to verify the
matched API pairs with torch.tensor_split as the source APL

5 EXPERIMENTAL SETUP
In the experiments, we address the following research questions:

e RQ1: How effective is DeepREL in terms of API coverage?

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

e RQ2: What is the false positive rate of DeepREL?
e RQ3: How do different configurations affect DeepREL?
e RQ4: Can DeepREL detect real-world bugs?

Our experiments are performed on PyTorch 1.10 [52] and Ten-
sorFlow 2.7 [13], the latest stable release versions for the two most
popular DL libraries (with 54K/162K stars on GitHub), which are
the most widely studied DL libraries in prior DL library testing
work [30, 54, 65, 66]. We run all experiments on a machine with an
8-core 2.20GHz Intel CPU, 16GB RAM, and Ubuntu 20.04.

5.1 Implementation

API Matcher. To find high-quality matched API pairs, we first use
the bs4 Python package [2] to parse the documentation of all 7973
APIs from TensorFlow and PyTorch. We collect both API signatures
and descriptions from the documentation. Before computing the
TF-IDF embedding, we use the Snowball stemmer [55] to convert
tokens into word stems. As for the document embedding, we use
the SentenceTransformer Python package [12] and adopt the pre-
trained model al1-MinilM-L6-v2 as our SBEncoder.

Invocation Synthesizer. For argument matching, we use the
munkres Python package [10] (implementing the Kuhn-Munkres
algorithm) to solve the maximum weighted bipartite matching prob-
lem. For template matching, we automatically search and extract
the code snippets for matching templates from the documentation.
API Match Verifier. We verify the relation of candidate API pairs
with a set of representative valid inputs. We obtain the valid inputs
traced from various input sources used by state-of-the-art Free-
Fuzz [66], which include the documentation, developer tests, and
202 DL models, and are representative to verify the function of APIs.
We feed a maximum of 100 valid invocations of the source API from
the FreeFuzz database into both the source API and target API as
the verifying inputs and check if they have consistent behaviors.
API Fuzzer. We leverage the fuzzing strategies of FreeFuzz to
mutate all the valid inputs traced for each source API (within the
FreeFuzz database) and run all the generated inputs (1000 for each
source API following the default setting of FreeFuzz [66]) on both
the source API and target API to detect consistency bugs.

5.2 Metrics

# of Covered API. Following prior work in DL library testing [66],
we report the number of covered APIs. An API is covered by Deep-
REL if it is successfully invoked by API Match Verifier either as
a source API or a target API (i.e., invocations with the Success
status). Since DL libraries contain a large number of APIs, API
coverage is an important metric of test adequacy.

False Positive Rate. If an API pair satisfies that 1) at least one of
its invocation code is accepted by the API Match Verifier, and 2)
at least one of its accepted invocation code is against its labeled
property during the fuzzing phase, it is named an inconsistent
API pair. The false positive rate for inconsistent API pairs is the
proportion of detected inconsistent API pairs which are false alarms.
It is commonly used in prior work on fuzzing or testing [22, 61, 80].
# of Detected Bugs. Bug finding is the ultimate goal for fuzzing,
and thus we also report the number of distinct bugs DeepREL finds.
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Table 1: Comparison with FreeFuzz on API coverage

#Total #FreeFuzz #DeepREL Improvement(%)

PyTorch 1592 470 1071 601 (128%)
TensorFlow 6381 688 1902 1214 (176%)
Total 7973 1158 2973 1815 (157%)

Table 2: Verified API pairs

Equivalence, ;. Equivalencessqrys  Total

PyTorch 1357 2933 4290
TensorFlow 5132 3676 8808
Total 6489 6609 13098

6 RESULT ANALYSIS

6.1 ROQ1: Effectiveness in API Coverage

In this RQ, we aim to study the effectiveness of DeepREL in terms
of covering more APIs with API relations. Table 1 shows the num-
ber of DL library APIs covered by DeepREL and state-of-the-art
FreeFuzz. Column “#Total” presents the total number of APIs in DL
libraries, while Column “Improvement” presents the improvement
of DeepREL over FreeFuzz. In the fuzzing stage, DeepREL covers
2973 APIs, which is a huge improvement (157%) over FreeFuzz that
covers only 1158 APIs. For example, there are totally 1592 PyTorch
APIs, and DeepREL can cover 1071 APIs, 128% more than FreeFuzz.
A large number of APIs are not covered by FreeFuzz because they
are less frequently used and not covered by any of the three sources
of FreeFuzz. Leveraging API relations, DeepREL can successfully
invoke these APIs with their relational APIs’ inputs. The huge API
coverage improvement demonstrates the potential of DeepREL.

Table 3: Source distribution of inferred API pairs

N‘ Seed New
Src

Seed | 902 544
PyTorch ‘ New ‘ 598 2246
Seed | 777 1633
TensorFlow ‘ New ‘ 830 5568

Table 2 shows the number of verified API pairs detected by Deep-
REL. Columns “Equivalence, ;" and “Equivalences;qsy,s” present
the number of value-equivalent and status-equivalent API pairs
accepted by the API Match Verifier respectively. DeepREL accepts
13098 API pairs in total, showing that such API relations are com-
mon in DL libraries. On PyTorch, DeepREL accepts more status-
equivalent API pairs (2933) than value-equivalent (1357). The reason
is that the latter relation is stricter than the former, and status-
equivalent API pairs are more common. For example, in term of
splitting a tensor, PyTorch provides a set of APIs: torch.split,
torch. tensor_split, torch.vsplit (splits the tensor vertically), and
torch.dsplit (splits the tensor depthwise). It is worth noting that
TensorFlow has much more APIs than PyTorch, and DeepREL de-
tects more value-equivalent API pairs than status-equivalent ones
on TensorFlow. This is because TensorFlow contains lots of APIs
for compatibility and low-level access operations and thus has
higher functional overlap: (1) The tf.compat module [8] contains
2579 redundant APIs to support forward and backward compatibil-
ity across versions. For example, tf.compat.v1.layers.conv2d is an
alias for tf.layers.conv2d, and it allows user to use the conv2d layer
with TensorFlow v1 behavior in TensorFlow v2; (2) The tf.raw_ops
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module [9] contains 1339 low-level APIs to provide direct access
to all TensorFlow ops. For example, tf.raw_ops.Pad adds padding
to tensors and is a low-level API compared to the high-level API
tf.pad with the same functionality.

Table 3 further presents a detailed distribution of the API pairs
inferred by DeepREL based on whether the source/target APIs in-
volve newly covered APIs. Column “Src” and Row “Tgt” present the
categorization of the source and target APIs, respectively; Column-
s/Rows “Seed” and “New” indicate whether an API is from “seed
APIs” covered by FreeFuzz or is newly covered by DeepREL. Out
of all the 13098 API pairs verified by DeepREL, 1679 (902 + 777)
only involve APIs covered by the original FreeFuzz, and all the
remaining 11419 pairs involve newly covered APIs, which shows
the importance of leveraging API relations to cover more APIs.

We also conduct a manual study to investigate why there are
so many value-equivalent API pairs. Note that we do not look into
status-equivalent API pairs because they are more intuitive (e.g.,
many APIs may share similar input parameter types and/or out-
put behaviors). Since the number of verified value-equivalent API
Pairs is huge, we select the set of equivalent API pairs explicitly
specified in the documentation for our study. We mine the docu-
mentation for all 7973 PyTorch and TensorFlow APIs to extract API
pairs when one API explicitly references another API in the doc-
umentation. In this way, we automatically extract 2942 API pairs
and we manually categorize them in terms of why such relational
APIs exist. 2692 out of 2942 API pairs are value-equivalent pairs.
Note that 1828 of them are backward compatibility pairs, and are
unique to TensorFlow. Thus, we group the remaining pairs into 5
main categories as shown in Table 4. Ease of programming is the
main reason for Equivalence,,;,, API pairs in both DL libraries.
For example, torch.det is an alias for torch.linalg.det, and users
can use the two symbols interchangeably. Meanwhile, Deprecation
is one of the minor reasons. It is worth noting that we include the
deprecated APIs in our study since they are still in the code base
and can help cover more new APIs as well as find potential consis-
tency bugs. Table 4 also provides examples to demonstrate each
reason, where Column “Example (S, T)” refers to the (source API,
target API) pair. The last column explains the difference between
the relational APIs. For the Performance example, tf.stack and
tf.parallel_stack are equivalent APIs which pile a list of tensor
up. parallel_stack is more efficient than stack as the documenta-
tion of tf.parallel_stack says “parallel_stack will copy pieces of
the input into the output as they become available, in some situations
this can provide a performance benefit.” [7].

6.2 RQ2: False Positives

False Positive Rate (FPR) is a common metric to evaluate the ef-
fectiveness of fuzz testing. Table 5 shows the FPR of DeepREL on
the DL libraries. We analyze all inconsistencies reported by API
Fuzzer. Column “All” presents the total number of inconsistencies
detected by API Fuzzer. “TP” (True Positive) means the number of
true inconsistencies, and “FP” (False Positive) means the number of
false alarms (e.g., inconsistencies due to incorrectly inferred API re-
lations). We separately report the statistics of the Equivalence,q;,,¢
and Equivalenceg; g4y oracles, while the “Overall” statistics report
the merged results.
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Table 4: Classification of reasons for Equivalence,,,,. API pairs

Reason ‘ #TF % TF ‘ #PT

% PT ‘ Example (S, T)

Diff. between S and T

Ease of programming

460 95.44% 349 91.36% | (torch.det, torch.linalg.det)

S is an alias for T

Performance 10 2.07% 9  2.36% | (tf.parallel_stack, tf.stack) S uses parallelism for efficiency.
Special cases 10 2.07% 10 2.62% | (tf.boolean_mask, tf.ragged.boolean_mask) T extends S to ragged tensors.
Numerical stability 1 0.21% 4 1.05% | (torch.linalg.inv, torch.linalg.solve) T is faster and more numerically stable.
Deprecation 1 0.21% 10 2.62% | (torch.gr, torch.linalg.qr) Sis deprecated.

Table 5: False positive rate of DeepREL
Oracle #All TP FP FPR
Equivalence ;. 412 364 48 11.65%

PyTorch Equivalencessqzys 853 554 299 35.05%
Overall 1265 918 347 27.43%
Equivalence, ;¢ 97 68 29 29.90%
TensorFlow Equivalences;qzys 363 209 154 42.42%
Overall 460 277 183 39.78%
Equivalence, ;¢ 509 432 77 15.13%
Total Equivalencegsqrys 1216 763 453 37.25%
Overall 1725 1195 530 30.72%

The FPR of DeepREL is only 30.72%, which implies that our
API relation detection and verification techniques are effective.
The false positives mainly originate from incorrect API relation
verification. API Match Verifier leverages valid inputs of the source
API to decide whether an API relation candidate is correct or not.
However, the valid inputs come from the FreeFuzz database and
are not complete. Hence, API Match Verifier can mistakenly accept
a wrong API relation when the inputs cannot cover a certain part
of the possible input space and thus is insufficient to distinguish
the different behaviors of the API pair. We can also observe that
the FPR of Equivalence, ;. is lower than Equivalenceg;qtys. This
is because that Equivalence,,;,, is stricter than Equivalences;qrys,
making it easier to reject wrong API relations over verifying inputs.

6.3 RQ3: Impacts of Configuration

In this RQ we analyze how different configurations affect the perfor-
mance of DeepREL, including the API coverage, FPR, and running
time. We focus on two hyper-parameters, K (the number of matched
pairs for each source AP, discussed in Section 4.1) and I (the num-
ber of iterations, discussed in Section 4.5). The default values for
K and I are both 10 in DeepREL. To figure out the impact of K,
we run our experiments with different K values of 5, 10, 15, 20. We
also run DeepREL for up to 10 iterations and show the impact of
different I values from 1 to 10. Figures 8 and 9 show the results,
where the x axis is the iterations, and the y axis is the number of
covered APIs, FPR, and the running time respectively. The results
for different K values are shown in different lines. We can observe
that DeepREL terminates (i.e., reaching fixed points) in at most 8
iterations on PyTorch, and on TensorFlow it either terminates in at
most 8 iterations, or only covers 2 new APIs in the last iteration.

The impact of K is similar for PyTorch and TensorFlow. First, the
number of covered APIs of K = 10, 15, 20 are close, all significantly
higher than K = 5. Second, the FPR increases as K increases. The
reason is that less similar API pairs can incur more false positives.
Third, the running time is increasing approximately linearly with
K. Therefore, it is reasonable to set K as 10 in our default setting,
as setting K to be higher than 10 would bring marginal benefit in
terms of API coverage, but degrade FPR and time cost.

For the impact of I, we have the following observations. First,
as expected, the number of covered APIs increases at a lower and
lower pace with the increase of I, and converges within 10 iterations.
Second, the FPR generally increases with iteration. The reason is
that source APIs in later iterations are typically target APIs from
earlier iterations, and may have fewer and fewer valid inputs (since
they may fail on some inputs from the original source APIs) for
verifying inferred API pairs. The only exception is that FPR drops
when I increases to 2 with K = 5 or 10 on PyTorch. We look into it
and observe that DeepREL can accidentally detect a large number
of true positives in the 2" iteration (e.g., torch.Tensor.* APIs and
their value-equivalent APIs torch. ). Third, the running time grows
more rapidly at early iterations and more slowly later, which is
consistent with the growth of the number of covered APIs.

We can also observe that the total running time of the default
DeepREL is 12.8h for PyTorch and 26.3h for TensorFlow. Such cost is
actually quite common for fuzzing techniques, e.g., various fuzzing
techniques have been applied for 24h or even more [17, 40, 59, 67,
80] (including the recent LEMON work [65]).

6.4 RQ4: Bugs Detected

Table 6 presents the summary of real-world bugs detected by Deep-
REL for the studied DL libraries. Column “Total” shows the total
number of bugs detected by DeepREL, and Columns “Value” and
“Status” show the number of bugs detected with the Equivalence gy
and Equivalences;qsys oracle respectively. We also present the num-
ber of bugs rejected by developers (Column “Rejected”), confirmed
as previously unknown (Column “Confirmed”), and the number of
previously unknown bugs that have already been fixed (Column
“Fixed”). We can observe that DeepREL is able to detect 162 bugs in
total, with only 7 rejected by developers, 106 confirmed by develop-
ers as previously unknown bugs (48 already fixed), and all others
pending. Among those 106 confirmed bugs, only 9 can be found by
FreeFuzz, and none of them can be detected by CRADLE, AUDEE, or
LEMON. Furthermore, we have also found 10 documentation bugs
for PyTorch and 4 for TensorFlow during the experiment (these
document bugs are not included in Table 6).

The bugs detected by DeepREL can also be categorized into
single API bugs® and consistency bugs between relational API pairs.
Table 7 shows the breakdown of the 106 confirmed bugs based on
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